Reading: Sipser §3.1.
Objective: Define a computational model that is

- **General-purpose:**
 (as powerful as programming languages)

- **Formally Simple:**
 (we can prove what cannot be computed)
The Origins of Computer Science

Alan Mathison Turing

“On Computable Numbers, with an Application to the Entscheidungsproblem” 1936

CF also

- David Hilbert
 “Mathematical Problems” 1900

- Kurt Gödel
 “On Formally Undecidable Propositions . . .” 1931

- Alonzo Church
 “An Unsolvable Problem of Elementary Number Theory” 1936
The Basic Turing Machine

- Head can both read and write, and move in both directions
- Tape has unbounded length
- \square is the blank symbol. All but a finite number of tape squares are blank.
Formal Definition of a TM

A (deterministic) Turing Machine (TM) is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states, containing
 - the start state q_0
 - the accept state q_{accept}
 - the reject state q_{reject} ($\neq q_{\text{accept}}$)

- Σ is the input alphabet
 - Contains Σ

- Γ is the tape alphabet
 - Contains “blank” symbol $\sqcup \in \Gamma - \Sigma$
The transition function

\[Q \times \Gamma \rightarrow Q \times \Gamma \times \{ L, R \} \]

- \(L \) and \(R \) are “move left” and “move right”
- \(\delta(q, \sigma) = (q', \sigma', R) \)
 - Rewrite \(\sigma \) as \(\sigma' \) in current cell
 - Switch from state \(q \) to state \(q' \)
 - And move right
- \(\delta(q, \sigma) = (q', \sigma', L) \)
 - Same, but move left
 - \textit{Unless} at left end of tape, in which case stay put
Computation of TMs

- **A configuration** is uqv, where $q \in Q$, $u, v \in \Gamma^*$.
 - Tape contents $= uv$ followed by all blanks
 - State $= q$
 - Head on first symbol of v
 - Equivalent to uqv', where $v' = v\square$.

- Start configuration $= q_0w$, where w is input.

- One step of computation:
 - $uq\sigma v$ yields $u\sigma'q'v$ if $\delta(q, \sigma) = (q', \sigma', R)$.
 - $u\tau q\sigma v$ yields $uq'\tau\sigma'v$ if $\delta(q, \sigma) = (q', \sigma', L)$.
 - $q\sigma v$ yields $q'\sigma'v$ if $\delta(q, \sigma) = (q', \sigma', L)$.
 - If $q \in \{q_{accept}, q_{reject}\}$, computation halts.
TMs and Language Membership

- M accepts w if there is a sequence of configurations C_1, \ldots, C_k such that
 1. $C_1 = q_0w$.
 2. C_i yields C_{i+1} for each i.
 3. C_k is an accepting configuration (i.e. state of M is q_{accept}).

- $L(M) = \{ w : M$ accepts $w \}$.

- L is Turing-recognizable if $L = L(M)$ for some TM M, i.e.
 - $w \in L \Rightarrow M$ halts on w in state q_{accept}.
 - $w \notin L \Rightarrow M$ halts on w in state q_{reject} OR M never halts (it “loops”).
Decidability, a.k.a. Recursiveness

- L is **(Turing-)decidable** if there is a TM M s.t.
 - $w \in L \implies M$ halts on w in state q_{accept}.
 - $w \notin L \implies M$ halts on w in state q_{reject}.

- Other common terminology
 - Recursive = decidable
 - Recursively enumerable (r.e.) = Turing-recognizable
 - Because of alternate characterizations as sets that can be defined via certain systems of recursive (self-referential) equations.
Example

Claim: $L = \{ a^n b^n c^n : n \geq 0 \}$ is decidable.
Questions

- Does every TM recognize some language?
- Does every TM decide some language?
- How many Turing-recognizable languages are there?
- How many decidable languages are there?
The Church-Turing Thesis

Reading: Sipser §3.2, §3.3.
“Computability”

- Defined in terms of Turing machines
- Computable = recursive/decidable (sets, functions, etc.)
- In fact an abstract, universal notion
- Many other computational models yield exactly the same classes of computable sets and functions
- Power of a model = what is computable using the model (extensional equivalence)
- Not programming convenience, speed (for now...), etc.
- All translations between models are constructive
TM Extensions That Do Not Increase Its Power

- TMs with a 2-way infinite tape, unbounded to left and right

 \[\cdots \square a b a a \cdots \]

Proof that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety.

“Simulation.” Convert any 2-way infinite TM into an equivalent 1-way infinite TM with a “two-track tape.”

<table>
<thead>
<tr>
<th>[\begin{array}{c} c \ b \ a \end{array} \cdots</th>
<th>\begin{array}{c} b \ a \end{array} \cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>c b a \square b a a a \cdots</td>
<td>0 1 2 3 4</td>
</tr>
</tbody>
</table>

Tape of 2-way infinite TM \(M \)

| \[\begin{array}{c} b \\ a \end{array} = \langle b, a \rangle \] |
|-----------------|-----------------|
| b a \square a b c \cdots | 0 1 2 3 4 |

Corresponding tape of 1-way infinite TM \(M' \)
Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\), where:

- \(Q\) is a finite set of states, containing
 - the start state \(q_0\)
 - the accept state \(q_{\text{accept}}\)
 - the reject state \(q_{\text{reject}}\) \((\neq q_{\text{accept}})\)
- \(\Sigma\) is the input alphabet
- \(\Gamma\) is the tape alphabet
 - Contains \(\Sigma\)
 - Contains “blank” symbol \(\square \in \Gamma - \Sigma\)
- \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function.
Formalizing the Simulation of 2-way infinite tape TM

Formally, $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$.

M' includes, for every state q of M, two states:

$\langle q, 1 \rangle \sim "q, but we are working on upper track"

$\langle q, 2 \rangle \sim "q, but we are working on lower track"

e.g. If $\delta_M(q, \sigma) = (q', \sigma', L)$ then $\delta_{M'}(\langle q, 1 \rangle, \langle \sigma, \tau \rangle) = (\langle q', 1 \rangle, \langle \sigma', \tau \rangle, R)$.

Also need transitions for:

- Lower track
- U-turn on hitting endmarker
- Formatting input into “2-tracks”
Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- This lecture, some of next lecture, assignment 6

High-Level Description

- Does not refer to specific computational model
- Starting next time!
More extensions

- Adding **multiple tapes** does not increase power of TMs

![Diagram of a 2-tape TM](image)

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)
Simulation of multiple tapes

- Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into $2k$ tracks:
 - k tracks for tape symbols
 - k tracks for head position position markers (one in each track)

(Sipser does a different simulation.)
Simulation steps

- To simulate one move of the \(k\)-tape TM:
Simulation steps

- To simulate **one move** of the k-tape TM:
 - Start with the head on the left endmarker
 - Scan down the tape, remembering in the finite control the symbols “scanned” by the k heads
 - Scan back up the tape, revising each track in the vicinity of its head marker
 - Return the head to the left endmarker
Speed of the simulation

- Note that the “equivalence” in ability to compute functions or decide languages does not mean comparable speed.

 e.g. A standard TM can decide $L = \{w \# w : w \in \Sigma^*\}$ in time $\sim |w|^2$, but there is a linear-time 2-tape decider.
Speed of the simulation

- Note that the “equivalence” in ability to compute functions or decide languages does not mean comparable speed.

 e.g. A standard TM can decide $L = \{w \# w : w \in \Sigma^*\}$ in time $\sim |w|^2$, but there is a linear-time 2-tape decider.

- Let $T_M : \Sigma^* \to \mathbb{N}$ measure the amount of time a decider M uses on an input. That is, $T_M(w)$ is the number of steps TM M takes to halt on input w.

- General fact about multitape to single-tape slowdown:

 Theorem: If M is a multitape TM that takes time $T(w)$ when run on input w, then there is a 1-tape machine M' and a constant c such that M' simulates M and takes at most $cT(w)^2$ steps on input w.
Nondeterministic TMs

- Like TMs, but \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \)
- It mainly makes sense to think of NTMs as **recognizers**

\[
L(M) = \{w : M \text{ has some accepting computation on input } w\}
\]

Example: NTM to recognize

\[
\{w : w \text{ is a binary notation for a product of two integers } \geq 2\}
\]
Nondeterministic TMs

- Like TMs, but \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \)

- It mainly makes sense to think of NTMs as recognizers

\[
L(M) = \{ w : M \text{ has some accepting computation on input } w \}\]

Example: NTM to recognize
\(\{ w : w \text{ is a binary notation for a product of two integers } \geq 2 \} \)

1. Write any binary numeral (except 0 or 1) [N.D.]
2. Write \(\sqcup \)
3. Write any binary numeral (except 0 or 1) [N.D.]
4. Multiply
5. Compare product to the input; halt if they are equal, go into an infinite loop if not.
NTMs recognize the same languages as TMs

- Given a NTM M, we must construct a TM M' that determines, on input w, whether M has an accepting computation on input w.
- M' systematically tries
 - all one-step computations
 - all two-step computations
 - all three-step computations
 - ...
Enumerating computations

- There is a bounded number of k-step computations, for each k. (because for each configuration there is only a constant number of “next” configurations in one step)

- Ultimately M' either:
 - discovers an accepting computation of M, and accepts itself,
 - or
 - searches forever, and does not halt
In More Detail

- Suppose that the maximum number of different transitions for a given \((q, \sigma)\) is \(b\).
- Number those transitions \(1, \ldots, b\) (or less).
- Any computation of \(k\) steps is determined by a sequence of \(k\) numbers \(\leq b\) (the “nondeterministic choices”).
- How \(M'\) works: 3 tapes

 #1 | Original input to \(M\)

 #2 | Simulated tape of \(M\)

 #3 | 1213 \(\sqcup\) \(\ldots\) Nondeterministic choices for \(M'\)
Simulating one step of M

- Each major phase of the simulation by M' is to simulate one finite computation by M, using tape #3 to resolve nondeterministic ambiguities.

- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in $\{1, \ldots, b\}^*$ on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.

- **Claim:** $L(M') = L(M)$

- **Q:** Slowdown?
Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church’s λ-calculus (μ-recursive functions)
- Markov algorithms
- Your favorite high-level programming language (C, Lisp, Java, . . .)
- . . .
General Grammars

- Like context-free grammars, except that if \(u \rightarrow v \) is a rule, then \(u \) may be any string containing a nonterminal.

- So the rule \(AXY \rightarrow AYX \) where \(A, X, Y \in V \), “means” that the two-symbol substring \(XY \) can be replaced by \(YX \) whenever it appears with an \(A \) to its left.
Example of a General Grammar

A grammar to generate \(\{ a^n b^n c^n : n \geq 0 \} \).

\[\Sigma = \{ a, b, c \} \quad V = \{ A, B, C, A', B', C', S \} \]

- \(A, B, C \) are “aliases” for the terminal symbols \(a, b, c \).
- Only a single occurrence of \(A', B', \) or \(C' \) can be in the string being derived.
- It “crawls” from right to left, transforming nonterminal symbols into terminals.
The Church-Turing Thesis

General Grammars

Rules for $a^nb^nc^n$

- $S \rightarrow ABCS$
 $S \rightarrow C'$
 $S \rightarrow \varepsilon$

 (Thus $S \Rightarrow^* (ABC')^nC'$ for any $n \geq 0$)

- $CA \rightarrow AC$
 $BA \rightarrow AB$
 $CB \rightarrow BC$

 (Any inversions of the proper order can be repaired)

- $CC' \rightarrow C'c$
 $CC' \rightarrow B'c$

 (The c-transformer can crawl to the left, and turn into a b-transformer)

- $BB' \rightarrow B'b$
 $BB' \rightarrow A'b$

- $AA' \rightarrow A'a$
 $A' \rightarrow \varepsilon$

The only way to get a string of **terminals** yields one of the form $a^nb^nc^n$.

The Church-Turing Thesis

Equivalence of Grammars and TMs

Grammars and Turing Machines are Equivalent

Theorem: A language is generated by a grammar if and only if it is Turing-recognizable.

Proof:

1. \(L \) is generated by a grammar \(\Rightarrow \) \(L \) is Turing-recognizable

 \[\textbf{Pf:} \text{ Let } L = L(G), \ G \text{ a grammar. To construct a NTM } M \text{ such that } L(M) = L, \text{ construct } M \text{ so that } \]

 \(M \) nondeterministically carries out a derivation

 \(S = w_0 \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \cdots, \) checking each step to see if \(w_i = w. \)
L Turing-recognizable $\Rightarrow L$ is generated by a grammar.

2. L is recognized by a TM $M \Rightarrow L$ is generated by a grammar G

Pf: Without loss of generality, we assume that if M halts having started on input w, right before halting it erases its tape. G will simulate a **backwards computation** by M. The intermediate strings will be configurations $uq\sigma v$.
Rules of the Grammar

- \[S \rightarrow \$q_{\text{accept}}\$

- If \(\delta(q, \sigma) = (q', \sigma', R) \), then \(G \) has
 \[\sigma' q' \rightarrow q \sigma \]
 \[\sigma' q' \$ \rightarrow q \$, if \(\sigma = \square \)

- If \(\delta(q, \sigma) = (q', \sigma', L) \), then \(G \) has
 \[q' \tau \sigma' \rightarrow \tau q \sigma \text{ for each } \tau \in \Sigma \]
 \[q' \tau \$ \rightarrow \tau q \sigma \$, if \(\sigma' = \square \)
 \[\$q' \sigma' \rightarrow \$q \sigma \]

- Finally, \(\$ \rightarrow \varepsilon \) and, if \(q_0 \) is the start state of the TM, \(q_0 \rightarrow \varepsilon \)
Reduction of TMs to 2-CMs

A 2-counter machine (2-CM) has:

- A finite-state control
- Two counters, i.e., C_1 and C_2, which are registers containing integers ≥ 0 with only 3 operations:
 - Add 1 to C_1/C_2
 - Subtract 1 from C_1/C_2
 - Is $C_1/C_2 = 0$?

Theorem: For any TM, there is an equivalent 2-CM, in the sense that if you start the 2-CM with an encoding of the TM tape in its counters it will eventually halt with an encoding of what the TM computes.
Simulating a TM tape with 2 pushdown stores: Split the tape at the head position into two stacks

Moving TM head to left \equiv Pop from stack #1
Push onto stack #2
Moving TM head to right \equiv Pop from stack #2
Push onto stack #1
Change scanned symbol \equiv Change top of stack #1

(So 2-PDSs are as powerful as TMs)
Simulating One Stack with Two Counters:
Think of the stack as a number in a base $= |\Sigma| + 1$

[Assume ≤ 9 stack symbols]

- Pop the stack \equiv Divide by 10 and discard the remainder
- Push a_9 \equiv Multiply by 10 and add 9
- Is stack top $= a_3$? \equiv Is counter mod 10 $= 3$?

\rightarrow All of these can be calculated using a second counter.
Simulating Four Counters With Two:

\((p, q, r, s) \rightarrow 2^p 3^q 5^r 7^s\)

Add 1 to \(C_1\)
\[\equiv\] \(p \leftarrow p + 1\)
\[\equiv\] Double \(C_1'\)

Is \(C_3 \neq 0\)?
\[\equiv\] \(r \neq 0?\)
\[\equiv\] Does 5 divide \(C_1'\) evenly?

Subtract 1 from \(s\)
\[\equiv\] Divide \(C_1'\) by 7
The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem. That these formal models of algorithms capture our intuitive notion of algorithms is the Church-Turing Thesis.

(Church’s thesis = partial recursive functions, Turing’s thesis = Turing machines)

This is an extramathematical proposition, not subject to formal proof.
Decidability and a Universal Turing Machine

Reading: Sipser §4.1.
Another TM Variant: Enumerators

Def: A TM M *enumerates* a language L if M, when started from a blank tape, runs forever and “emits” all and only the strings in L. (For example, by writing the string on a special tape and passing through a designated state.)
Recognizable \equiv enumerable

Theorem: L is Turing-recognizable iff L is enumerated by some TM.

Proof:

(\Rightarrow) Suppose $L(M) = L$. We want to construct a TM M' that enumerates L.

M' **dovetails** all of the computations by M:

1. Do 1 step of M’s computation on w_0
2. Do 2 steps of M on w_0 and w_1
3. Do 3 steps on each of w_0, w_1, w_2

where w_0, w_1, \ldots = lexicographic enumeration of Σ^*.

Outputting any strings w_i whose computations have accepted.
(⇐) Conversely, suppose \(M \) enumerates \(L \). We want to show that \(L \) is RE.

Given \(w \), run \(M \) on the blank tape. Every time \(M \) passes through state \(q \) (the “enumeration state”) pause to see if \(w \) is on the output tape and halt if it is.

The language recognized by this algorithm is exactly the language enumerated by \(M \). QED.

- The Turing-decidable sets are usually called **recursive** because they can be computed using certain systems of recursive equations, rather than via TMs.
- The Turing-recognizable sets are usually called **recursively enumerable**, i.e., “computably enumerable.”
Enumerable in order \equiv decidability

Theorem: L is decidable iff L is enumerable in lexicographic order.

(lexicographic order has shorter strings before longer, and alphabetic order among strings of the same length)

Proof of \Rightarrow: If L is decidable, then to enumerate L in order, generate all of Σ^* in order and test each string for membership in L, enumerating those that are members.

Almost proof of \Leftarrow: to test if $w \in L$, enumerate L and wait until either w or a lexically later string is enumerated. ????
Decidability

- Recall that a language $L \subseteq \Sigma^*$ is decidable if there is a TM that always halts when started on an input in Σ^*, in either q_{accept} if $w \in L$ or q_{reject} if $w \notin L$.

- **Proposition:** Every regular language is decidable.

 Proof: (By “coding” a DFA as a TM.)
Asking questions about arbitrary finite automata

- **Q:** What if the DFA D is part of the input? That is, can we design a single TM that, given two inputs, D and w, decides whether D accepts w?
 - The TM needs to use a fixed alphabet & state set for all inputs D, w.

- **Q:** How to represent $D = (Q, \Sigma_D, \delta, q_0, F)$ and w?
 List each component of the 5-tuple, separated by |’s.
 - Represent elements of Q as binary strings over $\{0, 1\}$, separated by ,’s.
 - Represent elements of Σ_D as binary strings over $\{0, 1\}$, separated by ,’s.
 - Represent $\delta : Q \times \Sigma_D \rightarrow Q$ as a sequence of triples (q, σ, q'), separated by ,’s, etc.

We denote the encoding of D and w as $\langle D, w \rangle$.
A “Universal” algorithm for deciding regular languages

Proposition: \(A_{DFA} = \{ \langle D, w \rangle : D \text{ a DFA that accepts } w \} \) is decidable.

Proof sketch:

- First check that input is of proper form.
- Then simulate \(D \) on \(w \). Implementation on a multitape TM:
 - Tape 2: String \(w \) with head at current position (or to be precise, its representation).
 - Tape 3: Current state \(q \) of \(D \) (i.e., its representation).

- Could work with other encodings, e.g., transition function as a matrix rather than list of triples.
Representation independence

- **General point:** Notions of computability (e.g. decidability and recognizability) are independent of data representation.
 - A TM can convert any reasonable encoding to any other reasonable encoding.
 - We will use \langle \cdot \rangle to mean “any reasonable encoding”.
 - We will revisit representation issues when we discuss computational *speed*.
 - For the moment we are interested only in whether problems are decidable, undecidable, recognizable, etc., so we can be content knowing that there is some representation on which an algorithm could work.
Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- Previous lecture and today’s lecture so far

High-Level Description

- Does not refer to specific computational model, data representation
- From now on!
More Decidable Problems

- \{\langle R, w \rangle : R \text{ is a regular expression that generates } w \}\.
- \{\langle X \rangle : X \text{ is a DFA/NFA/RE such that } L(X) = \emptyset \}\.
- \{\langle X \rangle : X \text{ is a DFA/NFA/RE such that } |L(X)| = \infty \}\.
- \{\langle M, w \rangle : M \text{ is a PDA that accepts } w \}\.
- Every context-free language.
A Universal Turing machine

Theorem: There is a Turing machine U, such that when U is given $\langle M, w \rangle$ for any TM M and w, U produces the same result (accept/reject/loop) as running M on w.

Proof: Initially,

- First tape contains $\langle M \rangle$, including in particular its transition function δ_M.
- Second tape contains $\langle w \rangle$.
- Third tape contains $\langle q_{\text{start}} \rangle$.
- Simulate steps of M by multiple steps of U.

(Brief return to implementation description.)

\Rightarrow Turing machines can be “programmed”.

Decidability and a Universal Turing Machine

Universal Turing Machine
Consequences of the existence of Universal Turing Machines

- **Corollary:** \(A_{TM} = \{ \langle M, w \rangle : M \text{ accepts } w \} \) is Turing-recognizable (r.e.).

- **Corollary:** \(HALT_{TM} = \{ \langle M, w \rangle : M \text{ eventually halts on } w \} \) (“The Halting Problem”) is Turing-recognizable.

- **Corollary:** “The Turing Machines that halt on some input are an r.e. set” (What does this mean?)

- **Q:** What about \(\{ \langle M, w, n \rangle : M \text{ halts on } w \text{ in at most } n \text{ steps} \} \)?

- **Q:** Are these sets decidable?

- **Q:** Are there undecidable languages?
Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

 Proof:
Three basic facts on decidability vs. recognizability

1. If \(L \) is recursive, then \(L \) is r.e.

 Proof:
 If \(M \) decides \(L \), then a machine can recognize \(L \) by running \(M \), and then going into an infinite loop if \(M \) would have halted in the \(q_{\text{reject}} \) state.

2. If \(L \) is recursive then so is \(\overline{L} \).

 Proof:
Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

 Proof:
 If M decides L, then a machine can recognize L by running M, and then going into an infinite loop if M would have halted in the q_{reject} state.

2. If L is recursive then so is \overline{L}.

 Proof:
 A machine can decide \overline{L} by running M and then giving a “no” answer when M would give “yes” and vice versa.

3. L is recursive if and only if both L and \overline{L} are r.e.

 Proof:
 ...